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Abstract

This study is aimed to elucidate the physicodynamic phenomena governing diffusion coefficient (D) of the loaded drugs in a female controlled
drug delivery system (FcDDS) and to find the most influencing variable on the diffusivity using artificial neural networks (ANN). The release
profiles of sodium dodecyl sulphate (SDS), a topical microbicide used as a model drug, from FcDDS were obtained using in vitro apparatus, the
Simulant Vaginal System (SVS), under various conditions. The effects of formulation and intrinsic/extrinsic variables on the diffusivity of SDS
were assessed using artificial neural networks (ANN). The release profiles of SDS from FcDDS revealed a non-linear relationship between the
diffusivity and formulation/physiological variables. Intrinsic variables (vaginal fluid pH, vaginal fluid secretion rate) have a more prominent role in
defining the diffusion coefficient of SDS from FcDDS than formulation variables (formulation loading weight and loaded doses in the formulation)
or extrinsic variables (inserting position). Among 5 variables, pH of vagina fluids is the most influencing factor in defining the diffusion coefficient
(maximum value of 0.95 = 0.04) of SDS from FcDDS. The external exposure conditions clearly outweighed the effects of the formulation variables
on the diffusion coefficient of SDS. A model-based approach can be used to assess the diffusion coefficient of loaded drugs in FcDDS under the
given conditions, leading to a parameter-specific prevention strategy against sexually transmitted diseases (STD) with a high degree of confidence.

Published by Elsevier B.V.
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1. Introduction

There are a variety of techniques applicable for the dis-
covery of rules, patterns and relationships in a given data set.
Artificial neural networks (ANN) are a machine-based compu-
tational technique, which was initially introduced to simulate
neurological processing ability of the human brain via math-
ematical modeling of its functional unit (Hopfield and Tank,
1985; Achanta et al., 1995). They are networks of adaptable
nodes, which store experimental knowledge through the learn-
ing process from the given samples and can be applicable to
establishing a nonlinear relationship between the causal factors
and pharmacological efficacy (Chen et al., 2002). Therefore,
ANN can be considered as an advanced nonlinear regression
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model to assess the association of variables by means of iterative
training of data obtained from a designed experiment. ANN has
been successfully applied to solving various problems in phar-
maceutical research, such as product development (Hussain et
al., 1991), estimating diffusion coefficients (Jha et al., 1995),
predicting the mechanism of drug action (Nair et al., 1994), pre-
dicting pharmacokinetic parameters (Brier et al., 1995; Smith
and Brier, 1996; Weinstein et al., 1992), automated diagnosis of
heart disease (Higuchi et al., 2006), evaluation of the direction
and dynamics of changes in lipid parameters (Stachowska et al.,
2006) and the classification of primary oesophageal dysmotility
(Santos et al., 2006). It was also found that ANN predictions
are more accurate than those predicted by polynomial equations
(Chen et al., 2002).

In this study, ANN was applied to analyzing the quantitative
relationships between physiological variables and release pro-
files of loaded drugs from a female controlled drug delivery
system (FcDDS) which has been developed as an intravagi-
nal barrier device in a form of gel to prevent the onset of
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Table 1
Factors affecting drug release profiles and efficacy of the FcDDS
Variables Conditions Description References
SDS concentration 3,5% The concentration of SDS at the application site Howett et al. (1999), Krebs et al. (2000), Krebs et al. (1999)
needs to achieve the minimum effective
concentration required for HIV inhibition within
2 min of initial application
Loading weight of Gel 1.5,30¢g The loading weight of SDS gel will examine the Kim et al. (1992)
volume effects on the rate of drug release from
SGF
Flow rate of VFS 3, 5ml/h The flow rate of VFS will reflect the Gorodeski et al. (1998), Ruel-Gariepy et al. (2000)
physiological secretion rate (30-60 mg/day) of
vaginal mucus at the different phases of the
menstrual cycle
pH of VFS 4.0,55,74 Normal pH range of vaginal secretion is 3.0-5.5. Hunter and Nicholas (1959), White and Aitken (1989)
Menstrual and cervical secretions and semen act
as alkalizing agents to increase vaginal pH
Speed of rotation 0, Srpm The dynamic movement was added to the Hernadez et al. (1998), Sauer et al. (1998)
system by shaking and rotating from vertical to
horizontal position at various speeds
Site of application 5,15cm The loaded position of SGF will affect the time Ceschel et al. (2001)

required to achieve the effective microbicidal
concentration at the application site

The minimum effective SDS concentration: 0.025% (Howett et al., 1999). VFS: vaginal fluid simulant.

sexually transmitted disease (STD) including AIDS (Wang
and Lee, 2002, 2004). FcDDS, a gel-type formulation, which
was made of a combination of carbopol polymer (934P NF)
and hydroxypropyl methylcellulose (HPMC) and loaded with
sodium dodecyl sulfate (SDS) as a model microbicidal agent
was prepared for this study. FcDDS is intended for a burst
release of SDS within a minute of application and gradual release
afterwards. As FcDDS is administered inside vaginal cavity
where drug release, distribution and pharmacological activity
are not easily traceable, a full grasp of the physicodynamic
phenomena involved in the drug release and microbicidal activ-
ity within the vagina is necessary (Ballagh, 2004). Diffusion
coefficient (D), which defines the release profiles of drug from
FcDDS, was chosen as a major parameter to assess and predict
the kinetics of medical and pharmaceutical applications (Khan
et al., 2006). Diffusion of multi-component mixture is usually
approximated by defining single diffusion coefficient for each
solute, which evaluates the ratio of flux of the solute to its con-
centration gradient (Fick’s law) (Lauffer, 1961; Burke et al.,
2005).

To evaluate the effects of various variables on the diffusion
coefficient of FcDDS, we used an advanced apparatus called
“Simulant Vaginal System” (SVS), which precisely mimics the
physicodynamic conditions of the vagina, being equipped with
the vaginal fluid whose rate and pH are easily controllable as
programmed (Wang and Lee, 2004). The variables were catego-
rized as formulation variables (loading weight and SDS loading
doses of FcDDS), intrinsic variables (vaginal fluid pH, vaginal
fluid secretion rate, and speed of rotation) and extrinsic variables
(inserting position) and evaluated for their prognostic potency
on pharmacological activity (Wang and Lee, 2002). Ninety-six
sets (i.e., as described in Section 2) of data were generated for
this study under various combinations of variables tested in in
vitro SVS.

In this study, it was hypothesized that the relationship
between the release profile of SDS, a topical microbicide used as
a model drug, from FcDDS and the diffusion coefficient can be
accurately established using ANN. This relationship can be fur-
ther transformed into the model-based learning features, which
are able to predict the pharmacological efficacy of FcDDS under
various intrinsic and extrinsic conditions. The efficacy assess-
ment was based on previous findings that total HIV-1 inactivation
was achieved with SDS concentrations as low as 0.025% after
topical exposures at body temperatures (Howett et al., 1999).

2. Materials and methods
2.1. Materials

Carbopol 934P NF and HPMC (METHOCELR) were
obtained from BFGoodrich (Cleveland, OH) and Dow Chem-
ical Company (Midland, MI), respectively. SDS, #C labeled
SDS (0.1 mCi/ml) and bovine submaxillary gland mucin (BSM:
Sigma, St. Louis, MO) were obtained from Sigma chemical
company (St. Louis, MO). All reagents and solvents were of
analytical grade.

2.2. Preparation of carbopol-HPMC gel containing SDS

Carbopol-HPMC gel formulation containing SDS was pre-
pared by mixing two solutions: Carbopol (1.5%) and HPMC
(1.5%) separately dissolved in the citrate buffer solution (pH
4.0). A proper amount of SDS (the ratio of '*C labeled SDS
and SDS was 1:5000) was added into the mixture solution and
stirred constantly until the solution was completely homoge-
nized. 100 g each of Carbopol-HPMC gel was prepared under
various conditions as described in Table 1. The batch size of the
gel was optimized by adjusting concentrations of a gel, condi-
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tions of gelation process, viscosity, surface tension and porosity
(Wang and Lee, 2002, 2004).

2.3. The drug release profiles

The in vitro simulated vaginal system (SVS) was used to
obtain the release profiles of SDS from FcDDS under physiolog-
ically simulated conditions. Content of '*C-SDS was analyzed
by Liquid Scintillation Counter (a model LS-6500, Beckman
Coulter, Fullerton, CA). The modified Higuchi equation:

0 = RADCt)" (D

was used to examine the release profile of SDS from FcDDS, in
which Q is the percentage of drug released from the FcDDS at
time 7 (in hours), n is the diffusion exponent, A the total concen-
tration of drug in the system, D the diffusion coefficient of the
drug in the system, and C; is the solubility of drug in physiolog-
ical buffer. The modified Higuchi equation has been sensitive
to changes in formulation size or loading doses in predicting a
linear relationship between drug release and the square root of
time (Zimm et al., 1996). Measurements of diffusion coefficient
of each solute were followed.

2.4. Data collection for ANN

FcDDS made of carbopol (1.5%) and HPMC (1.5%) gel were
incorporated with varying concentrations of sodium dodecyl
sulphate (SDS) [3-5% (w/w)]. The major variables that may
affect the release profiles of SDS from FcDDS are summarized
in Table 1. Vaginal fluid simulant (VES), which was made of
mucin and the other components (NaCl, KCl, sodium acetate,
urea, albumin, lactic acid, amino acids and glycerol) (Owen and
Katz, 1999) and adjusted to varying pHs, was overflowed on
top of FcDDS. The flow rates of VFS (3—5 ml/h) were selected
based on the physiological secretion rate as described previ-
ously (Hunter and Nicholas, 1959). Among those variables, pH
of VFS has 3 conditions and the rest variables have 2 conditions
(maximum and minimum values) each. Therefore, 96 cases (the
combination of 5 variables (dose, weight, VES rate, speed of
rotation) with 2 conditions, one variable (pH of VFS) with 3 con-
ditions = 2> x 3) of the release profiles were analyzed to obtain
the onset and duration of the effective concentration (EC50) as
a function of 6 variables. A large number of release profiles
obtained for FcDDS under various conditions made it possible
to perform a computational analysis through parameter fitting
and data mining approach.

2.5. Development and training of the ANN

ANN has been used to classify, interpret and evaluate the
formulation and physiological variables involved with the devel-
opment of intravaginal delivery systems. In the multivariable
system, the quantitative relationship between causal factors and
response variables is thought to be complex and nonlinear. In
this context, a more precise assessment and new information on
the detailed characteristics of such formulations can be obtained

by analyzing all, or a sufficient number of the individual subunits
through an advanced technique. In addition, the manufacturing
of such multiple subunits can be optimized in detail to obtain
the best quality product achievable, which has not been possible
previously.

ANN was used as an advanced data mining approach to assess
the release rate of SDS from FcDDS through machine learning
features and to find the prevailing prognostic factors among vari-
ables. ANN was built using the forward and backward variable
selection process and based on tanh (i.e., the hyperbolic tangent
of x, i.e., sinh(x)/cosh(x)) and linear transfer functions. Com-
mercially available Neural Networks software (STATISTICA,
StatSoft Co., Tulsa, OK) with a personal computer was used in
modeling and optimization of SDS release from FcDDS.

The schematic diagram of the ANN used in this study is
shown in Fig. 1. ANN has three layers: input, a hidden layer of
radial centers and an output layer. The number of input layer
is same as input variables. The radial layer units represent the
centers of clusters of known training data, which is typically
large. The number of units in this hidden layer usually cannot
be less than the number of training cases without sacrificing per-
formance; the simplest approach is to use the full set of training
cases. This layer must be trained by a clustering algorithm such
as sub-sampling, K-means or Kohonen training. The output layer
performs a specialized function and each unit in the output layer
simply divides the output of the associated previous layer.

For network training, the network architecture consists of five
neurons in the input layer (N=35) and one neuron in the output
layer (M =1) (i.e., six input variables and one output variable
D). It is possible to select the number of units (nodes) in the
second radial layer, the smoothing factor (which controls the
deviation of the Gaussian kernel function located at the radial
centers) and clustering algorithm (such as sub-sampling and K-
means), as previously described (Jha et al., 1995). The selected
structure had four layers: the first layer had two input units;

-D value

hidden output
layer layer
Network Statistics:
Training Algorithm = BackPropagation of errors
Learning Rate (alpha) = 0.1:
Hidden layer activation function = 1/( 1 + ¢ ** -x) (binary sigmoid function)
Output layer activation function=1/( 1+ ¢ **-x) (binary sigmoid function)

Stopping condition of learning = Min Root Mean Square of errors

Fig. 1. The flow chart of ANN.
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Fig. 2. The effect of fluid pH or fluid rate on the release profile of SDS from FcDDS.

the second layer had 10 hidden units (with negative exponential
activation function and radial PSP function). To arrive at the
optimum network configuration, 10 network training runs taking
1 to 10 neurons (L = 1-10), respectively, in the hidden layer were
performed. These units in the hidden layer were assigned using a
K-means center assignment algorithm. The third layer had seven
units (with linear activation and PSP function). The fourth layer
had six output units (linear activation and division PSP function).

The network was trained according to the steps previously
described (Jha et al., 1995). A single iteration involves as many
forward and reverse passes as the number of input patterns in the
training set. The learning period was completed when minimum
“root mean square” (RMS) was reached:

P _ m2
RMS — lz (v; n)’z )‘|

where RMS is the root mean square, y’ the experimental
(observed) response, y" the calculated (predicted) response and
n is the number of experiments. Regression network training sets
the weights on the third and fourth layers, which are used to esti-
mate the regression curve. The network weights obtained have
been proved useful for estimating diffusion coefficients over a
wide range of experimental conditions.

(@)

2.6. Data normalization and interpretation for ANN

Since each parameter has a different scale, data in each set
are normalized using the weighted mean (1/SE) before combin-
ing the effective sizes of each parameter. Different preparations
and schedules adapted across the parameters were normalized
using the objective categorization process. D values in figures
(Y-axis) shown in Section 3 were rescaled by dividing with
5 x 1079, being placed in a range between 0 and 1 for the better
comparative demonstration.

3. Results
3.1. Drug release profiles

As previously described, formulation variables (loading
weight and SDS loading doses in FcDDS), extrinsic variables

(inserting position and speed of rotation) and intrinsic variables
(VFS pH, VES secretion rate) were evaluated for their contribu-
tion to the release profiles of SDS from FcDDS. The results of
the estimated effects of various variables on drug release pro-
files of SDS from FcDDS were shown in Fig. 2. There was
a wide variation in the release profiles, which were character-
ized by two stages of the burst release followed by a complete
diffusing out towards the final stage. For the entire 6h span
of the release profile, the released amounts at an early stage
increased exponentially up to 1h, and the amount increment
became linear, then gradually reaching a plateau at about 5 h.
In other words, an initial burst release was followed by the
second burst release of up to about 25% of the loading dose
and as system hydrolytic erosion continued, the system disin-
tegrated at about 5h and released the drug into the medium
with a higher rate. The cumulative release amount of SDS from
FcDDS gradually reached about 80% of the loading dose, as
SDS entrapped within the inner region of FcDDS was mostly
diffused out.

The release profiles were greatly affected by changes in the
levels of the vagina fluid pH and fluid rate. As the pH of FcDDS
increased from 4.0 to 7.4, its viscosity increased, further affect-
ing the drug release rates. VFS with pH 7.4 significantly lowered
the release rate of SDS from FcDDS, the total released amount
of SDS in 5h achieving only about 8% of the loaded dose in
the system. The vaginal fluid secretion rate also has prominent
effects on the drug release profiles from FcDDS; the release rate
of SDS under a VFS flow rate of 5 ml/h was much faster than
that of 3 ml/h.

The gel swelling process under the acidic conditions is
classically Fickian, suggesting that drug transport, in most
conventional cases, is controlled by the exchange rates of
free water and relaxation of polymer chains. However, it
was observed that the phenomenon produced by FcDDS
did not follow Fick’s law, probably owing to the predomi-
nant influence of extrinsic/intrinsic parameters. Although the
drug loading amount and formulation weight may have dis-
tinctive effects on the initial burst release of loaded drugs,
no apparent effect on the release behavior of SDS from
FcDDS is detected mainly because the polymer hydrolytic ero-
sion caused by extrinsic/intrinsic variables is the prevailing
mechanism.



Y. Lee et al. / International Journal of Pharmaceutics 351 (2008) 119-126 123

Table 2

Diffusion coefficient values of the samples under various conditions of formulation and intrinsic/extrinsic variables obtained using ANN (Selected from 96 cases)

No. Loading dose (g/100 ml) Gel weight (g) pH of VES Flow rate (ml/h) Insertion Position (cm) D value (cm?* h~1)
1 3 1.5 4.0 3 5 0.0586
2 3 1.5 4.0 3 15 0.0455
3 3 1.5 4.0 3 5 0.0359
5 3 1.5 4.0 5 15 0.0769
8 3 1.5 55 3 15 0.0258

11 3 1.5 5.5 5 15 0.0408

14 3 1.5 7.4 3 15 0.0020

20 3 3.0 4.0 3 15 0.0243

23 3 3.0 4.0 5 15 0.0590

26 3 3.0 5.5 3 15 0.0345

29 3 3.0 55 5 15 0.0342

38 5 1.5 4.0 3 15 0.0264

44 5 1.5 55 3 15 0.0166

47 5 1.5 5.5 5 15 0.0312

64 5 3.0 55 5 15 0.0257

3.2. Effects of variables on drug diffusion coefficient

The effects of physiological variables on the diffusion coef-
ficients (D) of loaded drug from FcDDS were examined using
an ANN model. In this study, the mass transfer profiles of SDS
in the polymer gel (fixative polymer composition) were fitted to
the experimental data. The information gained by parameter fit-
ting could be useful in understanding and predicting how much
formulation and physiological variables influence the release
profiles of loaded drugs in FcDDS.

The effects of various variables on the diffusion coefficient
assessed using ANN are shown in Table 2. The 15 samples out
of 96 cases were retrospectively chosen based on the condi-
tions that properties of all the variables tested in this study were
fully represented and outcomes of diffusion coefficient were
distinctively comparable. The diffusivity value was calculated
as 0.002 cm? h~! under the experimental conditions of pH 7.4
and a flow rate of 3ml/h (Exp No. 14), while the diffusivity
varied to 0.0243 cm®> h~!, as the pH of VFS was changed from
neutral to acidic pH 4.0 (Exp No. 20). The diffusivity signifi-
cantly increased to 0.059 cm? h~! as the flow rate was changed
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Fig. 3. The effect of the fluid pH on the diffusion coefficient (D; cm® h~') of
SDS from FcDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e) 4.5, (f) 5.0) (D:
a scale of 5 x 1079).

from 3 to Sml/h (Exp No. 23). The root mean square (RMS)
value, a statistical measure of the magnitude of a varying quan-
tity, for diffusion coefficient of the network was estimated as
0.9987, which is validated the accuracy of estimated outcomes
(Kamuntavicius, 1997).

The release profiles of SDS revealed a non-linear relationship
between the diffusion coefficient and formulation/physiological
variables. The most distinctive differences in the correlation
profiles were observed in Fig. 3, in which diffusivity of SDS
from FcDDS were significantly affected by pH, demonstrating
that diffusivity values decreased as the fluid pH increased. Six
plots in Fig. 3 correspond to the VFS rates, ranging from 2.5 to
5.0 ml/h. Judging from the network estimated outcomes, the dif-
fusion coefficient becomes almost constant irrespective of pH,
when the fluid rates were less than a threshold value which was
about 4.0 ml/h. When the fluid rates were above the threshold
rate, the diffusion coefficient rapidly decreased as the fluid pH
increased up to 5.5 and thereafter increased with a slower rate
before it eventually became flattening out. It is also demonstrated
that the diffusion coefficient at a fixed fluid rate decreased as
drug loading amount increased (Fig. 4) or weight of FcDDS
increased (Fig. 5). For comparison purposes, the maximum val-
ues of diffusion coefficient calculated for each variable were
shown in Table 3. The maximum value of diffusion coefficient
at a fixed fluid rate was lower than those at fluid pHs (0.85 £ 0.05
vs. 0.95£0.04). An insert position also affected the diffusion
coefficient (Fig. 6), but the maximum value of diffusion coef-
ficient was much lower than that of at fluid pHs (0.41 £0.03

Table 3
The maximum values of diffusion coefficient for
tion/intrinsic/extrinsic variable (N=6, D: a scale of 5 x 107%)

each formula-

Variables D value (cm?h™!)
SDS concentration 0.58 (£0.04)
Loading weight of gel 0.64 (£0.04)
Flow rate of VFS 0.85 (£0.05)
pH of VES 0.95 (£0.04)
Site of application 0.41 (£0.03)

N=6.
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vs. 0.9510.04). These results confirmed that fluid pH is one
of the most influencing parameters for defining diffusivity of
FcDDS.

The distinctive deviation of the SDS release rates estimated
by ANN from those by linear-regression on the Higuchi equa-
tion indicated that the erosion of the polymer matrix driven
by externally-added vaginal fluid on the gel was the major
force that defined the release profiles of SDS from FcDDS.
Especially, the speed of rotation significantly affected the dif-
fusivity when the fluid rate was greater than 4.0, as shown
in Fig. 7. The obtained results indicated that the prevalent
release mechanism of SDS from FcDDS seemed to be the com-
bined action of erosion and diffusion (anomalous, non-Fickian
mechanism).
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Fig. 5. The effect of the loading weight (g) on the diffusion coefficient (D;
cm?h~1) of SDS from FeDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e)
4.5, (f) 5.0) (D: a scale of 5 x 107).
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4. Discussion

When a matrix system is implanted into the organs, a cumula-
tive drug concentration to the target site is hardly assessable. The
most common procedure for identifying an optimized release
behavior of polymer-based systems at the implantation site has
been to analyze the formulation on the dose level, i.e., one or
more dose units (Moriguchi et al., 2006). However, with extrin-
sic/intrinsic hydrodynamic conditions, factors other than those
involved with formulation (i.e., dose or weight) also signifi-
cantly affect the release profiles of loaded drugs. Different from
other topical delivery routes, vagina is unique in that it has hor-
mone regulated reproductive organ (Chien and Lee, 2002). Most
mucosal sites, such as nasal or rectal, have relatively perpetual
physiological regulation, whereas vagina has more dynamically
active and fluid rich organs. Owing to that, even though it has a
huge potential to serve as a route for the topical/systemic deliv-
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Fig. 7. The effect of the speed of rotation (rpm) on the diffusion coefficient (D;
cm?h™1) of SDS from FeDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e)
4.5, (f) 5.0) (D: a scale of 5 x 1079).
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ery of exogenous compounds, its actual usage is very limited.
Through this study, we have attempted to elucidate physicody-
namic phenomena involved with intrinsic/extrinsic variables of
vagina and set a proper guide in application of these variables
to the intravaginal delivery of exogenous compounds.

Since vaginal secretion rate and pH have an integral role in
regulating polymer hydrolytic erosion and drug release rates
from the intravaginal formulation, the statistic tool which can
accurately generate and precisely interpret the experimental data
seems to be essential in evaluating efficacy of FcDDS. The non-
linear dependence of diffusion coefficient on concentrations of
surfactant and electrolyte, together with the complex nature of
the interactions between them, makes it difficult to describe the
diffusion phenomenon by computationally simple and unique
phenomenological or empirical models (Schliecker et al., 2004).
Excellent correlations for predicting the effects of nonionic sur-
factant partitioning on the dissolution kinetics of residual drug
in a model porous medium were previously reported (Sharmin
et al., 2006). However, these processes needed to define several
experimentally determined parameters and prediction of release
profiles based on the polynomial equation was often limited
to low levels, resulting in poor estimation of the optimal for-
mulations. Moreover, extrinsic/intrinsic variables make it more
complicate to analyze given data set. On the other hand, a data
mining approach that posses the ability to learn and general-
ize nonlinear functional relationship(s) can be very effectively
employed to arrive at a correlation for estimating diffusion coef-
ficients based on a set of limited data and easily measurable
experimental conditions.

In order to overcome the shortcomings in multiple regression
analysis, a multi-objective simultaneous optimization technique
incorporated with artificial neural network (ANN) has been
developed (Glass et al., 2005). ANN is a flexible, nonlinear
modeling tool that is an extension of traditional statistical tech-
niques. ANN is a hierarchical architecture wherein neurons in
the neighboring layers are fully interconnected and the strength
of a connection is known as weight. The main advantage of ANN
is very rapid training in data acquisition, which makes regression
networks more effective than polynomial equations in situations
where approximations of such relationships are required (Chen
et al., 2002). The neural networks are applicable to most data
mining fields and various parameters on the target outcome. Due
to its linearity, neural networks can closely approximate most
functions, thus highly accurate prediction of the relationships
between diffusion coefficient and involved variables is made
possible. One of the negative aspects of ANN is that the out-
comes are sometimes difficult to interpret. Besides since there
are no predefined rules about the topology of the network, one
must work through trial and error before deciding the best topol-
ogy suitable for the given problem domain. Nevertheless, many
researchers are currently opting for the interpretability of the
neural networks.

To support aforementioned claim, the diffusion coefficient
of the loaded drug in FcDDS was analyzed using an ANN
model. The computational model makes it possible to main-
tain complexity regarding phenomena, such as dissolution of the
solid drug and boundary conditions at the formulation surfaces

(Zhang et al., 2003), providing further insight into the mech-
anisms governing the release process from FcDDS. Moreover,
the information obtained can be used to simplify or change the
model so as to concentrate on the most important phenomena
influencing the release profile. The simulation results illustrated
that, for the entire span of release, the concentrations at all zones
continue to increase exponentially until after 1 h of application,
when the concentration increment becomes linear. These pro-
files were verified by the simulation process under various drug
loading or loading weight conditions as shown in Figs. 4 and 5.
This finding departs from the conventional drug release profile,
which is mostly regulated by formulation factors as supported
by the claim on the constant release mechanism in the polymer
system (Ishihara et al., 1982; Zimm et al., 1996). The rationales
behind the apparent departure is that although the polymer carri-
ers deliver a constant drug flux, intrinsic variables including VFS
secretion rate and its pH, outweigh a traditional drug release pro-
files derived from the drug elimination kinetics and the process
of convection and diffusions from FcDDS. Especially, influ-
ence of weight of FcDDS on the released amount of SDS was
much lower than that of intrinsic/extrinsic variables, denoting
the maximal values of diffusion coefficient of 0.64 4 0.04 and
0.95 +0.04 (Table 3) for FcDDS loading weight and fluid pH,
respectively. The results of this study clearly indicated that in-
depth studies on the roles of extrinsic and intrinsic variables in
the kinetics of topically delivered pharmaceuticals are needed
for the evaluation of intravaginal drug delivery systems.

The ANN approach presented in this paper handles the influ-
ence of phenomena, such as polymer film diffusion, external
mass transfer, dissolution of the solid drug and geometric param-
eters including gel weight and size. This model helps to establish
the in vitro—in vivo correlation based on in vitro properties
of a dosage form and relevant environmental conditions. In
vivo studies using the rabbit model is currently undergoing. A
computer-based model established on ANN approach enables
us to properly predict the effects of the intrinsic variables (i.e.,
pH and vaginal secretion rate) on the drug release profiles in
each customer. The results of this study will further help us to
understand the role of parameter-specific physiological condi-
tions in the in vivo drug profiles from intravaginal drug delivery
systems.

5. Conclusion

This study elucidated physicodynamic phenomena govern-
ing the diffusion coefficient of the loaded compounds in FcDDS
and was intended to find the most influencing parameters on their
release rates. ANN retrospectively assessed the implication of
formulation and physiological variables and identified prognos-
tic factors for the diffusion coefficient of SDS from FcDDS.
Even though formulation variables (loading weight and SDS
loading doses in FcDDS) and extrinsic variables (inserting posi-
tion) apparently influence the diffusivity of SDS from FcDDS,
intrinsic variables (vaginal fluid pH, vaginal fluid secretion rate)
more significantly affected the drug release rate of SDS from
FcDDS. The external exposure conditions, which were added
to simulate organ-specific drug delivery conditions, outweighed
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the effects of dose related variables on the diffusivity of SDS
from FcDDS. Among 5 variables, pH of vagina fluids is the
most influencing factor in determining the release profiles of
SDS from FeDDS.

An ANN-based assessment is explicitly able to predict the
drug release profiles as a function the given physiological condi-
tions. Subsequently, an ANN-based assessment of FcDDS will
lead to a parameter-specific prevention strategy against sexu-
ally transmitted diseases including AIDS with a high degree of
confidence and at a high level of functional integration.
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