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bstract

This study is aimed to elucidate the physicodynamic phenomena governing diffusion coefficient (D) of the loaded drugs in a female controlled
rug delivery system (FcDDS) and to find the most influencing variable on the diffusivity using artificial neural networks (ANN). The release
rofiles of sodium dodecyl sulphate (SDS), a topical microbicide used as a model drug, from FcDDS were obtained using in vitro apparatus, the
imulant Vaginal System (SVS), under various conditions. The effects of formulation and intrinsic/extrinsic variables on the diffusivity of SDS
ere assessed using artificial neural networks (ANN). The release profiles of SDS from FcDDS revealed a non-linear relationship between the
iffusivity and formulation/physiological variables. Intrinsic variables (vaginal fluid pH, vaginal fluid secretion rate) have a more prominent role in
efining the diffusion coefficient of SDS from FcDDS than formulation variables (formulation loading weight and loaded doses in the formulation)
r extrinsic variables (inserting position). Among 5 variables, pH of vagina fluids is the most influencing factor in defining the diffusion coefficient

maximum value of 0.95 ± 0.04) of SDS from FcDDS. The external exposure conditions clearly outweighed the effects of the formulation variables
n the diffusion coefficient of SDS. A model-based approach can be used to assess the diffusion coefficient of loaded drugs in FcDDS under the
iven conditions, leading to a parameter-specific prevention strategy against sexually transmitted diseases (STD) with a high degree of confidence.
ublished by Elsevier B.V.
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. Introduction

There are a variety of techniques applicable for the dis-
overy of rules, patterns and relationships in a given data set.
rtificial neural networks (ANN) are a machine-based compu-

ational technique, which was initially introduced to simulate
eurological processing ability of the human brain via math-
matical modeling of its functional unit (Hopfield and Tank,
985; Achanta et al., 1995). They are networks of adaptable
odes, which store experimental knowledge through the learn-
ng process from the given samples and can be applicable to

stablishing a nonlinear relationship between the causal factors
nd pharmacological efficacy (Chen et al., 2002). Therefore,
NN can be considered as an advanced nonlinear regression
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odel to assess the association of variables by means of iterative
raining of data obtained from a designed experiment. ANN has
een successfully applied to solving various problems in phar-
aceutical research, such as product development (Hussain et

l., 1991), estimating diffusion coefficients (Jha et al., 1995),
redicting the mechanism of drug action (Nair et al., 1994), pre-
icting pharmacokinetic parameters (Brier et al., 1995; Smith
nd Brier, 1996; Weinstein et al., 1992), automated diagnosis of
eart disease (Higuchi et al., 2006), evaluation of the direction
nd dynamics of changes in lipid parameters (Stachowska et al.,
006) and the classification of primary oesophageal dysmotility
Santos et al., 2006). It was also found that ANN predictions
re more accurate than those predicted by polynomial equations
Chen et al., 2002).

In this study, ANN was applied to analyzing the quantitative

elationships between physiological variables and release pro-
les of loaded drugs from a female controlled drug delivery
ystem (FcDDS) which has been developed as an intravagi-
al barrier device in a form of gel to prevent the onset of

mailto:Leech@umkc.edu
dx.doi.org/10.1016/j.ijpharm.2007.09.032
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Table 1
Factors affecting drug release profiles and efficacy of the FcDDS

Variables Conditions Description References

SDS concentration 3, 5% The concentration of SDS at the application site
needs to achieve the minimum effective
concentration required for HIV inhibition within
2 min of initial application

Howett et al. (1999), Krebs et al. (2000), Krebs et al. (1999)

Loading weight of Gel 1.5, 3.0 g The loading weight of SDS gel will examine the
volume effects on the rate of drug release from
SGF

Kim et al. (1992)

Flow rate of VFS 3, 5 ml/h The flow rate of VFS will reflect the
physiological secretion rate (30–60 mg/day) of
vaginal mucus at the different phases of the
menstrual cycle

Gorodeski et al. (1998), Ruel-Gariepy et al. (2000)

pH of VFS 4.0, 5.5, 7.4 Normal pH range of vaginal secretion is 3.0–5.5.
Menstrual and cervical secretions and semen act
as alkalizing agents to increase vaginal pH

Hunter and Nicholas (1959), White and Aitken (1989)

Speed of rotation 0, 5 rpm The dynamic movement was added to the
system by shaking and rotating from vertical to
horizontal position at various speeds

Hernadez et al. (1998), Sauer et al. (1998)

Site of application 5, 15 cm The loaded position of SGF will affect the time
required to achieve the effective microbicidal

site

Ceschel et al. (2001)

T : vagi

s
a
w
a
s
w
r
a
w
a
p
i
c
F
t
e
a
s
c
2

c
“
p
t
p
r
d
fl
(
o
s
t
v

b
a
a
t
a
v
m
w
t

2

2

o
i
S
S
c
a

2

p
(
4
a

concentration at the application

he minimum effective SDS concentration: 0.025% (Howett et al., 1999). VFS

exually transmitted disease (STD) including AIDS (Wang
nd Lee, 2002, 2004). FcDDS, a gel-type formulation, which
as made of a combination of carbopol polymer (934P NF)

nd hydroxypropyl methylcellulose (HPMC) and loaded with
odium dodecyl sulfate (SDS) as a model microbicidal agent
as prepared for this study. FcDDS is intended for a burst

elease of SDS within a minute of application and gradual release
fterwards. As FcDDS is administered inside vaginal cavity
here drug release, distribution and pharmacological activity

re not easily traceable, a full grasp of the physicodynamic
henomena involved in the drug release and microbicidal activ-
ty within the vagina is necessary (Ballagh, 2004). Diffusion
oefficient (D), which defines the release profiles of drug from
cDDS, was chosen as a major parameter to assess and predict

he kinetics of medical and pharmaceutical applications (Khan
t al., 2006). Diffusion of multi-component mixture is usually
pproximated by defining single diffusion coefficient for each
olute, which evaluates the ratio of flux of the solute to its con-
entration gradient (Fick’s law) (Lauffer, 1961; Burke et al.,
005).

To evaluate the effects of various variables on the diffusion
oefficient of FcDDS, we used an advanced apparatus called
Simulant Vaginal System” (SVS), which precisely mimics the
hysicodynamic conditions of the vagina, being equipped with
he vaginal fluid whose rate and pH are easily controllable as
rogrammed (Wang and Lee, 2004). The variables were catego-
ized as formulation variables (loading weight and SDS loading
oses of FcDDS), intrinsic variables (vaginal fluid pH, vaginal
uid secretion rate, and speed of rotation) and extrinsic variables
inserting position) and evaluated for their prognostic potency

n pharmacological activity (Wang and Lee, 2002). Ninety-six
ets (i.e., as described in Section 2) of data were generated for
his study under various combinations of variables tested in in
itro SVS.

s
n
v
g

nal fluid simulant.

In this study, it was hypothesized that the relationship
etween the release profile of SDS, a topical microbicide used as
model drug, from FcDDS and the diffusion coefficient can be
ccurately established using ANN. This relationship can be fur-
her transformed into the model-based learning features, which
re able to predict the pharmacological efficacy of FcDDS under
arious intrinsic and extrinsic conditions. The efficacy assess-
ent was based on previous findings that total HIV-1 inactivation
as achieved with SDS concentrations as low as 0.025% after

opical exposures at body temperatures (Howett et al., 1999).

. Materials and methods

.1. Materials

Carbopol 934P NF and HPMC (METHOCELR) were
btained from BFGoodrich (Cleveland, OH) and Dow Chem-
cal Company (Midland, MI), respectively. SDS, 14C labeled
DS (0.1 mCi/ml) and bovine submaxillary gland mucin (BSM:
igma, St. Louis, MO) were obtained from Sigma chemical
ompany (St. Louis, MO). All reagents and solvents were of
nalytical grade.

.2. Preparation of carbopol-HPMC gel containing SDS

Carbopol-HPMC gel formulation containing SDS was pre-
ared by mixing two solutions: Carbopol (1.5%) and HPMC
1.5%) separately dissolved in the citrate buffer solution (pH
.0). A proper amount of SDS (the ratio of 14C labeled SDS
nd SDS was 1:5000) was added into the mixture solution and

tirred constantly until the solution was completely homoge-
ized. 100 g each of Carbopol-HPMC gel was prepared under
arious conditions as described in Table 1. The batch size of the
el was optimized by adjusting concentrations of a gel, condi-
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deviation of the Gaussian kernel function located at the radial
centers) and clustering algorithm (such as sub-sampling and K-
means), as previously described (Jha et al., 1995). The selected
structure had four layers: the first layer had two input units;
Y. Lee et al. / International Journal

ions of gelation process, viscosity, surface tension and porosity
Wang and Lee, 2002, 2004).

.3. The drug release profiles

The in vitro simulated vaginal system (SVS) was used to
btain the release profiles of SDS from FcDDS under physiolog-
cally simulated conditions. Content of 14C-SDS was analyzed
y Liquid Scintillation Counter (a model LS-6500, Beckman
oulter, Fullerton, CA). The modified Higuchi equation:

= (2ADCst)
n (1)

as used to examine the release profile of SDS from FcDDS, in
hich Q is the percentage of drug released from the FcDDS at

ime t (in hours), n is the diffusion exponent, A the total concen-
ration of drug in the system, D the diffusion coefficient of the
rug in the system, and Cs is the solubility of drug in physiolog-
cal buffer. The modified Higuchi equation has been sensitive
o changes in formulation size or loading doses in predicting a
inear relationship between drug release and the square root of
ime (Zimm et al., 1996). Measurements of diffusion coefficient
f each solute were followed.

.4. Data collection for ANN

FcDDS made of carbopol (1.5%) and HPMC (1.5%) gel were
ncorporated with varying concentrations of sodium dodecyl
ulphate (SDS) [3–5% (w/w)]. The major variables that may
ffect the release profiles of SDS from FcDDS are summarized
n Table 1. Vaginal fluid simulant (VFS), which was made of

ucin and the other components (NaCl, KCl, sodium acetate,
rea, albumin, lactic acid, amino acids and glycerol) (Owen and
atz, 1999) and adjusted to varying pHs, was overflowed on

op of FcDDS. The flow rates of VFS (3–5 ml/h) were selected
ased on the physiological secretion rate as described previ-
usly (Hunter and Nicholas, 1959). Among those variables, pH
f VFS has 3 conditions and the rest variables have 2 conditions
maximum and minimum values) each. Therefore, 96 cases (the
ombination of 5 variables (dose, weight, VFS rate, speed of
otation) with 2 conditions, one variable (pH of VFS) with 3 con-
itions = 25 × 3) of the release profiles were analyzed to obtain
he onset and duration of the effective concentration (EC50) as

function of 6 variables. A large number of release profiles
btained for FcDDS under various conditions made it possible
o perform a computational analysis through parameter fitting
nd data mining approach.

.5. Development and training of the ANN

ANN has been used to classify, interpret and evaluate the
ormulation and physiological variables involved with the devel-
pment of intravaginal delivery systems. In the multivariable

ystem, the quantitative relationship between causal factors and
esponse variables is thought to be complex and nonlinear. In
his context, a more precise assessment and new information on
he detailed characteristics of such formulations can be obtained
armaceutics 351 (2008) 119–126 121

y analyzing all, or a sufficient number of the individual subunits
hrough an advanced technique. In addition, the manufacturing
f such multiple subunits can be optimized in detail to obtain
he best quality product achievable, which has not been possible
reviously.

ANN was used as an advanced data mining approach to assess
he release rate of SDS from FcDDS through machine learning
eatures and to find the prevailing prognostic factors among vari-
bles. ANN was built using the forward and backward variable
election process and based on tanh (i.e., the hyperbolic tangent
f x, i.e., sinh(x)/cosh(x)) and linear transfer functions. Com-
ercially available Neural Networks software (STATISTICA,
tatSoft Co., Tulsa, OK) with a personal computer was used in
odeling and optimization of SDS release from FcDDS.
The schematic diagram of the ANN used in this study is

hown in Fig. 1. ANN has three layers: input, a hidden layer of
adial centers and an output layer. The number of input layer
s same as input variables. The radial layer units represent the
enters of clusters of known training data, which is typically
arge. The number of units in this hidden layer usually cannot
e less than the number of training cases without sacrificing per-
ormance; the simplest approach is to use the full set of training
ases. This layer must be trained by a clustering algorithm such
s sub-sampling, K-means or Kohonen training. The output layer
erforms a specialized function and each unit in the output layer
imply divides the output of the associated previous layer.

For network training, the network architecture consists of five
eurons in the input layer (N = 5) and one neuron in the output
ayer (M = 1) (i.e., six input variables and one output variable
). It is possible to select the number of units (nodes) in the

econd radial layer, the smoothing factor (which controls the
Fig. 1. The flow chart of ANN.
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Fig. 2. The effect of fluid pH or fluid rat

he second layer had 10 hidden units (with negative exponential
ctivation function and radial PSP function). To arrive at the
ptimum network configuration, 10 network training runs taking
to 10 neurons (L = 1–10), respectively, in the hidden layer were
erformed. These units in the hidden layer were assigned using a
-means center assignment algorithm. The third layer had seven
nits (with linear activation and PSP function). The fourth layer
ad six output units (linear activation and division PSP function).

The network was trained according to the steps previously
escribed (Jha et al., 1995). A single iteration involves as many
orward and reverse passes as the number of input patterns in the
raining set. The learning period was completed when minimum
root mean square” (RMS) was reached:

MS =
[∑ (yp

i − ym
i )

2

n

]
(2)

here RMS is the root mean square, yp the experimental
observed) response, ym the calculated (predicted) response and
is the number of experiments. Regression network training sets

he weights on the third and fourth layers, which are used to esti-
ate the regression curve. The network weights obtained have

een proved useful for estimating diffusion coefficients over a
ide range of experimental conditions.

.6. Data normalization and interpretation for ANN

Since each parameter has a different scale, data in each set
re normalized using the weighted mean (1/SE) before combin-
ng the effective sizes of each parameter. Different preparations
nd schedules adapted across the parameters were normalized
sing the objective categorization process. D values in figures
Y-axis) shown in Section 3 were rescaled by dividing with
× 10−6, being placed in a range between 0 and 1 for the better
omparative demonstration.

. Results
.1. Drug release profiles

As previously described, formulation variables (loading
eight and SDS loading doses in FcDDS), extrinsic variables

n
F
s
m

he release profile of SDS from FcDDS.

inserting position and speed of rotation) and intrinsic variables
VFS pH, VFS secretion rate) were evaluated for their contribu-
ion to the release profiles of SDS from FcDDS. The results of
he estimated effects of various variables on drug release pro-
les of SDS from FcDDS were shown in Fig. 2. There was
wide variation in the release profiles, which were character-

zed by two stages of the burst release followed by a complete
iffusing out towards the final stage. For the entire 6 h span
f the release profile, the released amounts at an early stage
ncreased exponentially up to 1 h, and the amount increment
ecame linear, then gradually reaching a plateau at about 5 h.
n other words, an initial burst release was followed by the
econd burst release of up to about 25% of the loading dose
nd as system hydrolytic erosion continued, the system disin-
egrated at about 5 h and released the drug into the medium
ith a higher rate. The cumulative release amount of SDS from
cDDS gradually reached about 80% of the loading dose, as
DS entrapped within the inner region of FcDDS was mostly
iffused out.

The release profiles were greatly affected by changes in the
evels of the vagina fluid pH and fluid rate. As the pH of FcDDS
ncreased from 4.0 to 7.4, its viscosity increased, further affect-
ng the drug release rates. VFS with pH 7.4 significantly lowered
he release rate of SDS from FcDDS, the total released amount
f SDS in 5 h achieving only about 8% of the loaded dose in
he system. The vaginal fluid secretion rate also has prominent
ffects on the drug release profiles from FcDDS; the release rate
f SDS under a VFS flow rate of 5 ml/h was much faster than
hat of 3 ml/h.

The gel swelling process under the acidic conditions is
lassically Fickian, suggesting that drug transport, in most
onventional cases, is controlled by the exchange rates of
ree water and relaxation of polymer chains. However, it
as observed that the phenomenon produced by FcDDS
id not follow Fick’s law, probably owing to the predomi-
ant influence of extrinsic/intrinsic parameters. Although the
rug loading amount and formulation weight may have dis-
inctive effects on the initial burst release of loaded drugs,

o apparent effect on the release behavior of SDS from
cDDS is detected mainly because the polymer hydrolytic ero-
ion caused by extrinsic/intrinsic variables is the prevailing
echanism.
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Table 2
Diffusion coefficient values of the samples under various conditions of formulation and intrinsic/extrinsic variables obtained using ANN (Selected from 96 cases)

No. Loading dose (g/100 ml) Gel weight (g) pH of VFS Flow rate (ml/h) Insertion Position (cm) D value (cm2 h−1)

1 3 1.5 4.0 3 5 0.0586
2 3 1.5 4.0 3 15 0.0455
3 3 1.5 4.0 3 5 0.0359
5 3 1.5 4.0 5 15 0.0769
8 3 1.5 5.5 3 15 0.0258

11 3 1.5 5.5 5 15 0.0408
14 3 1.5 7.4 3 15 0.0020
20 3 3.0 4.0 3 15 0.0243
23 3 3.0 4.0 5 15 0.0590
26 3 3.0 5.5 3 15 0.0345
29 3 3.0 5.5 5 15 0.0342
38 5 1.5 4.0 3 15 0.0264
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.2. Effects of variables on drug diffusion coefficient

The effects of physiological variables on the diffusion coef-
cients (D) of loaded drug from FcDDS were examined using
n ANN model. In this study, the mass transfer profiles of SDS
n the polymer gel (fixative polymer composition) were fitted to
he experimental data. The information gained by parameter fit-
ing could be useful in understanding and predicting how much
ormulation and physiological variables influence the release
rofiles of loaded drugs in FcDDS.

The effects of various variables on the diffusion coefficient
ssessed using ANN are shown in Table 2. The 15 samples out
f 96 cases were retrospectively chosen based on the condi-
ions that properties of all the variables tested in this study were
ully represented and outcomes of diffusion coefficient were
istinctively comparable. The diffusivity value was calculated
s 0.002 cm2 h−1 under the experimental conditions of pH 7.4
nd a flow rate of 3 ml/h (Exp No. 14), while the diffusivity

aried to 0.0243 cm2 h−1, as the pH of VFS was changed from
eutral to acidic pH 4.0 (Exp No. 20). The diffusivity signifi-
antly increased to 0.059 cm2 h−1 as the flow rate was changed

ig. 3. The effect of the fluid pH on the diffusion coefficient (D; cm2 h−1) of
DS from FcDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e) 4.5, (f) 5.0) (D:
scale of 5 × 10−6).
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3 15 0.0166
5 15 0.0312
5 15 0.0257

rom 3 to 5 ml/h (Exp No. 23). The root mean square (RMS)
alue, a statistical measure of the magnitude of a varying quan-
ity, for diffusion coefficient of the network was estimated as
.9987, which is validated the accuracy of estimated outcomes
Kamuntavicius, 1997).

The release profiles of SDS revealed a non-linear relationship
etween the diffusion coefficient and formulation/physiological
ariables. The most distinctive differences in the correlation
rofiles were observed in Fig. 3, in which diffusivity of SDS
rom FcDDS were significantly affected by pH, demonstrating
hat diffusivity values decreased as the fluid pH increased. Six
lots in Fig. 3 correspond to the VFS rates, ranging from 2.5 to
.0 ml/h. Judging from the network estimated outcomes, the dif-
usion coefficient becomes almost constant irrespective of pH,
hen the fluid rates were less than a threshold value which was

bout 4.0 ml/h. When the fluid rates were above the threshold
ate, the diffusion coefficient rapidly decreased as the fluid pH
ncreased up to 5.5 and thereafter increased with a slower rate
efore it eventually became flattening out. It is also demonstrated
hat the diffusion coefficient at a fixed fluid rate decreased as
rug loading amount increased (Fig. 4) or weight of FcDDS
ncreased (Fig. 5). For comparison purposes, the maximum val-
es of diffusion coefficient calculated for each variable were
hown in Table 3. The maximum value of diffusion coefficient

t a fixed fluid rate was lower than those at fluid pHs (0.85 ± 0.05
s. 0.95 ± 0.04). An insert position also affected the diffusion
oefficient (Fig. 6), but the maximum value of diffusion coef-
cient was much lower than that of at fluid pHs (0.41 ± 0.03

able 3
he maximum values of diffusion coefficient for each formula-

ion/intrinsic/extrinsic variable (N = 6, D: a scale of 5 × 10−6)

ariables D value (cm2 h−1)

DS concentration 0.58 (±0.04)
oading weight of gel 0.64 (±0.04)
low rate of VFS 0.85 (±0.05)
H of VFS 0.95 (±0.04)
ite of application 0.41 (±0.03)

= 6.
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Fig. 4. The effect of the loading dose (%) on the diffusion coefficient (D;
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physiological regulation, whereas vagina has more dynamically
m2 h−1) of SDS from FcDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e)
.5, (f) 5.0) (D: a scale of 5 × 10−6).

s. 0.95 ± 0.04). These results confirmed that fluid pH is one
f the most influencing parameters for defining diffusivity of
cDDS.

The distinctive deviation of the SDS release rates estimated
y ANN from those by linear-regression on the Higuchi equa-
ion indicated that the erosion of the polymer matrix driven
y externally-added vaginal fluid on the gel was the major
orce that defined the release profiles of SDS from FcDDS.
specially, the speed of rotation significantly affected the dif-

usivity when the fluid rate was greater than 4.0, as shown
n Fig. 7. The obtained results indicated that the prevalent
elease mechanism of SDS from FcDDS seemed to be the com-

ined action of erosion and diffusion (anomalous, non-Fickian
echanism).

ig. 5. The effect of the loading weight (g) on the diffusion coefficient (D;
m2 h−1) of SDS from FcDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e)
.5, (f) 5.0) (D: a scale of 5 × 10−6).

a
h

F
c
4

ig. 6. The effect of the insertion position (cm) on the diffusion coefficient (D;
m2 h−1) of SDS from FcDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e)
.5, (f) 5.0) (D: a scale of 5 × 10−6).

. Discussion

When a matrix system is implanted into the organs, a cumula-
ive drug concentration to the target site is hardly assessable. The

ost common procedure for identifying an optimized release
ehavior of polymer-based systems at the implantation site has
een to analyze the formulation on the dose level, i.e., one or
ore dose units (Moriguchi et al., 2006). However, with extrin-

ic/intrinsic hydrodynamic conditions, factors other than those
nvolved with formulation (i.e., dose or weight) also signifi-
antly affect the release profiles of loaded drugs. Different from
ther topical delivery routes, vagina is unique in that it has hor-
one regulated reproductive organ (Chien and Lee, 2002). Most
ucosal sites, such as nasal or rectal, have relatively perpetual
ctive and fluid rich organs. Owing to that, even though it has a
uge potential to serve as a route for the topical/systemic deliv-

ig. 7. The effect of the speed of rotation (rpm) on the diffusion coefficient (D;
m2 h−1) of SDS from FcDDS (flow rate; (a) 2.5, (b) 3.0, (c) 3.5, (d) 4.0, (e)
.5, (f) 5.0) (D: a scale of 5 × 10−6).
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ry of exogenous compounds, its actual usage is very limited.
hrough this study, we have attempted to elucidate physicody-
amic phenomena involved with intrinsic/extrinsic variables of
agina and set a proper guide in application of these variables
o the intravaginal delivery of exogenous compounds.

Since vaginal secretion rate and pH have an integral role in
egulating polymer hydrolytic erosion and drug release rates
rom the intravaginal formulation, the statistic tool which can
ccurately generate and precisely interpret the experimental data
eems to be essential in evaluating efficacy of FcDDS. The non-
inear dependence of diffusion coefficient on concentrations of
urfactant and electrolyte, together with the complex nature of
he interactions between them, makes it difficult to describe the
iffusion phenomenon by computationally simple and unique
henomenological or empirical models (Schliecker et al., 2004).
xcellent correlations for predicting the effects of nonionic sur-

actant partitioning on the dissolution kinetics of residual drug
n a model porous medium were previously reported (Sharmin
t al., 2006). However, these processes needed to define several
xperimentally determined parameters and prediction of release
rofiles based on the polynomial equation was often limited
o low levels, resulting in poor estimation of the optimal for-

ulations. Moreover, extrinsic/intrinsic variables make it more
omplicate to analyze given data set. On the other hand, a data
ining approach that posses the ability to learn and general-

ze nonlinear functional relationship(s) can be very effectively
mployed to arrive at a correlation for estimating diffusion coef-
cients based on a set of limited data and easily measurable
xperimental conditions.

In order to overcome the shortcomings in multiple regression
nalysis, a multi-objective simultaneous optimization technique
ncorporated with artificial neural network (ANN) has been
eveloped (Glass et al., 2005). ANN is a flexible, nonlinear
odeling tool that is an extension of traditional statistical tech-

iques. ANN is a hierarchical architecture wherein neurons in
he neighboring layers are fully interconnected and the strength
f a connection is known as weight. The main advantage of ANN
s very rapid training in data acquisition, which makes regression
etworks more effective than polynomial equations in situations
here approximations of such relationships are required (Chen

t al., 2002). The neural networks are applicable to most data
ining fields and various parameters on the target outcome. Due

o its linearity, neural networks can closely approximate most
unctions, thus highly accurate prediction of the relationships
etween diffusion coefficient and involved variables is made
ossible. One of the negative aspects of ANN is that the out-
omes are sometimes difficult to interpret. Besides since there
re no predefined rules about the topology of the network, one
ust work through trial and error before deciding the best topol-

gy suitable for the given problem domain. Nevertheless, many
esearchers are currently opting for the interpretability of the
eural networks.

To support aforementioned claim, the diffusion coefficient

f the loaded drug in FcDDS was analyzed using an ANN
odel. The computational model makes it possible to main-

ain complexity regarding phenomena, such as dissolution of the
olid drug and boundary conditions at the formulation surfaces

i
m
F
t
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Zhang et al., 2003), providing further insight into the mech-
nisms governing the release process from FcDDS. Moreover,
he information obtained can be used to simplify or change the

odel so as to concentrate on the most important phenomena
nfluencing the release profile. The simulation results illustrated
hat, for the entire span of release, the concentrations at all zones
ontinue to increase exponentially until after 1 h of application,
hen the concentration increment becomes linear. These pro-
les were verified by the simulation process under various drug

oading or loading weight conditions as shown in Figs. 4 and 5.
his finding departs from the conventional drug release profile,
hich is mostly regulated by formulation factors as supported
y the claim on the constant release mechanism in the polymer
ystem (Ishihara et al., 1982; Zimm et al., 1996). The rationales
ehind the apparent departure is that although the polymer carri-
rs deliver a constant drug flux, intrinsic variables including VFS
ecretion rate and its pH, outweigh a traditional drug release pro-
les derived from the drug elimination kinetics and the process
f convection and diffusions from FcDDS. Especially, influ-
nce of weight of FcDDS on the released amount of SDS was
uch lower than that of intrinsic/extrinsic variables, denoting

he maximal values of diffusion coefficient of 0.64 ± 0.04 and
.95 ± 0.04 (Table 3) for FcDDS loading weight and fluid pH,
espectively. The results of this study clearly indicated that in-
epth studies on the roles of extrinsic and intrinsic variables in
he kinetics of topically delivered pharmaceuticals are needed
or the evaluation of intravaginal drug delivery systems.

The ANN approach presented in this paper handles the influ-
nce of phenomena, such as polymer film diffusion, external
ass transfer, dissolution of the solid drug and geometric param-

ters including gel weight and size. This model helps to establish
he in vitro–in vivo correlation based on in vitro properties
f a dosage form and relevant environmental conditions. In
ivo studies using the rabbit model is currently undergoing. A
omputer-based model established on ANN approach enables
s to properly predict the effects of the intrinsic variables (i.e.,
H and vaginal secretion rate) on the drug release profiles in
ach customer. The results of this study will further help us to
nderstand the role of parameter-specific physiological condi-
ions in the in vivo drug profiles from intravaginal drug delivery
ystems.

. Conclusion

This study elucidated physicodynamic phenomena govern-
ng the diffusion coefficient of the loaded compounds in FcDDS
nd was intended to find the most influencing parameters on their
elease rates. ANN retrospectively assessed the implication of
ormulation and physiological variables and identified prognos-
ic factors for the diffusion coefficient of SDS from FcDDS.
ven though formulation variables (loading weight and SDS

oading doses in FcDDS) and extrinsic variables (inserting posi-
ion) apparently influence the diffusivity of SDS from FcDDS,

ntrinsic variables (vaginal fluid pH, vaginal fluid secretion rate)

ore significantly affected the drug release rate of SDS from
cDDS. The external exposure conditions, which were added

o simulate organ-specific drug delivery conditions, outweighed
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he effects of dose related variables on the diffusivity of SDS
rom FcDDS. Among 5 variables, pH of vagina fluids is the
ost influencing factor in determining the release profiles of
DS from FcDDS.

An ANN-based assessment is explicitly able to predict the
rug release profiles as a function the given physiological condi-
ions. Subsequently, an ANN-based assessment of FcDDS will
ead to a parameter-specific prevention strategy against sexu-
lly transmitted diseases including AIDS with a high degree of
onfidence and at a high level of functional integration.
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